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Abstract. We are concerned with concave programming or the convex maximization prob-
lem. In this paper, we propose a method and algorithm for solving the problem which are
based on the global optimality conditions first obtained by Strekalovsky (Soviet Mathe-
matical Doklady, 8(1987)). The method continues approaches given in (Journal of global
optimization, 8(1996); Journal of Nolinear and convex Analyses 4(1)(2003)). Under certain
assumptions a convergence property of the proposed method has been established. Some
computational results are reported. Also, it has been shown that the problem of finding the
largest eigenvalue can be found by the proposed method.
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1. Introduction

We consider the problem of maximizing a convex function over a simple
set D ⊂R

n:

f (x)−→max, x ∈D. (1.1)

Problem (1.1) has many applications in economics and engineering. Con-
vex maximization (equivalently and concave programming) problem as a
special case of problem (1.1), where D is a polytope, is originated from Tuy
[15]. The cutting plane method for this case was proposed in [15]. There
are many iterative algorithms [8,9,11,12] for solving the convex maximiza-
tion problem by resorting to the cutting plane or branch and bound tech-
niques as well as other methods. Problem (1.1) is multiextremal and from
the computational complexity viewpoint it is NP-hard. Classical local opti-
mality conditions can’t guarantee always finding a global optimal solution.
We consider, in this paper, a method and algorithm for solving problem
(1.1) based on the global optimality condition in [14]. Our approach uses
properties of the maximum function and the simple set.
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The paper is organized as follows. In Section 2, we give existing optimality
conditions and related method and algorithm for problem (1.1). Section 3
describes a method and algorithm based on the maximum function. In
Section 4, we report computational experiments on the proposed algorithm.

2. A Maximization of Strongly Convex Function over a Simple Set

A notion of a simple set was introduced in [3] as follows.

DEFINITION 1. A set D in R
n is called a simple set if the following con-

ditions hold:

(a) D is compact,
(b) the problem of maximizing a linear function over D is solvable by a

“simple” method.

We say that condition (b) holds, for example, if it can be solved as a lin-
ear programming problem (i.e., if D is a convex polyhedron) or if an ana-
lytical form of the solution is explicitly given. For example, if D is a box
constraint

D ={x ∈R
n | ai �xi �bi, i =1, . . . , n}

then the solution x∗ of the following problem

〈c, x〉−→max, x ∈D

has a form

x∗
i =

{
bi, if ci >0,

ai, if ci � 0.

If D is D ={x ∈R
n | ‖x −x0‖ � r} then the problem

〈c, x〉−→ max, x ∈D

has the analytical solution x∗ as

x∗ =x0 + c

‖c‖r.

Consider the convex maximization problem

f (x)−→ max, x ∈D, (2.1)
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where f : Rn →R is a strongly convex and twice differentiable function and
D ⊂R

n is a simple set. Then the global optimality condition for this prob-
lem can be stated from the following theorem.

THEOREM 1 ([14]). A point z ∈D with f ′(z) 	= 0 is a solution of problem
(2.1) if and only if the following condition holds:

〈f ′(y), x −y〉 � 0 f or all y ∈Ef (z)(f ) and x ∈D,

where Ec(f )={y ∈R
n | f (y)= c}.

Define the auxiliary maximum function π(y) as follows:

π(y)=max
x∈D

〈f ′(y), x −y〉, y ∈R
n (2.2)

and the function θ(z) for z∈D:

θ(z)= max
y∈Ef (z)(f )

π(y).

Since f is strongly convex, the set Ef (z)(f ) is compact. The auxiliary maximum
function π(y) is also known as the gap function in the literature [1,7].

THEOREM 2. Let z∈D and f ′(z) 	=0. If θ(z)=0 then the point z is a solu-
tion to the problem (2.1).

The proof is immediate from Theorem 1.

A theoretical algorithm for the problem (2.1) based on the following
problem

π(y)−→max, y ∈Ef (xk)(f ) (2.3)

was proposed in [3]. To make it numerically implementable the algorithm
was adapted as follows in [4].

ALGORITHM ε-MAX
Input: A strongly convex function f and a simple set D, εk > 0 for all k

and
∑∞

k=0 εk <+∞, and ε >0.

Output: A global maximizer x of f over D.

Step 1. Choose a feasible solution xo ∈ D and a sequence {εk} such that
f ′(xo) 	=0. Set k :=0.
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Step 2. Find an εk solution ȳk of the problem

π(y)−→max, y ∈Ef (xk)(f )

that is, π(ȳk) = maxx∈D〈f ′(ȳk), x − ȳk〉 � maxy∈Ef (xk )(f ) π(y)−
εk and f (ȳk) = f (xk). Let x̄k+1 ∈ D be a solution satisfying
π(ȳk)=〈f ′(ȳk), x̄k+1 − ȳk〉.

Step 3. If π(ȳk) � ε − εk then output x = xk and terminate. Otherwise set
k :=k +1 and xk := x̄k return Step 2.

The above algorithm used the set covering method [10] in Step 2 to find
εk solution which is still hard and computationally available for only small
dimensions.

THEOREM 3 ([4]). Let f∗ = minx∈Rn f (x) and x0 be a feasible solution of
problem (2.1) such that f (x0)>f∗. Assume that f : Rn →R be strongly con-
vex and continuously differentiable. Let a sequence {εk}⊂R be such that εk >

0 for k =0,1, . . . , and

∞∑
k=0

εk +f∗ <f (x0).

Then the sequence {xk} generated by Algorithm ε-MAX is a maximizing
sequence for problem (2.1), that is,

lim
k→∞

f (xk)=max
x∈D

f (x)

and every accumulation point of the sequence {xk} is a global maximizer of
(2.1).

3. A Numerical Method for Solving the Convex Maximization

In order to develop an another method for solving problem (2.1), we will
use some additional properties of the maximum function π(y).

LEMMA 1 ([3]). The function π(y) is continuous on R
n.

THEOREM 4 ([3]). The directional derivative of π(y) at any point y ∈R
n in

any direction h∈R
n of the euclidian norm 1 exists, and is given by

π ′(y;h)= max
x∈D(y)

〈f ′′(y)h, x〉−〈f ′′(y)y +f ′(y), h〉.
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LEMMA 2. If the set D is strictly convex, then the function π(y) becomes
differentiable and the gradient is given by

π ′(y)=f ′′(y)(x(y)−y)−f ′(y),

where

〈f ′(y), x(y)〉=max
x∈D

〈f ′(y), x〉.

Proof. We write π(y) in the form:

π(y)=ϕ(y)−φ(y),

where ϕ(y)= maxx∈D〈f ′(y), x〉 and φ(y)=〈f ′(y), y〉. Since f is twice con-
tinuously differentiable, we can easily show that the function φ(y) is con-
tinuously differentiable on R

n and

φ′(y)=f ′′(y)y +f ′(y). (3.1)

Thus we need only to show that ϕ(y) is differentiable at a point y ∈R
n.

First, define the vector function p : R
n →R

n by

p(y)=arg max
x∈D

〈f ′(y), x〉.

Also denote by D(y) the set:

D(y)={x ∈D : 〈f ′(y), x〉=ϕ(y)}, y ∈R
n.

We note that since D is strictly convex then D(y) consists of the unique
point p(y). We show that the function p(y) is continuous. Suppose on the
contrary that p(y) is not continuous. Then there exist a point ȳ and a
sequence {yk}⊂R

n such that

lim
k→∞

yk = ȳ,

lim
k→∞

p(yk)= z,

and p(ȳ) 	= z. We have

ϕ(ȳ)=max
x∈D

〈f ′(ȳ), x〉=〈f ′(ȳ), p(ȳ)〉.

On the other hand, due to continuity of ϕ(y), we get

ϕ(ȳ)= lim
k→∞

ϕ(yk)= lim
k→∞

〈f ′(yk),p(yk)〉=〈f ′(ȳ), z〉.
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It means that z∈D(ȳ) and p(ȳ)∈D(ȳ) which contradicts that the set D(ȳ)

contains a single point. Consequently, the vector function p(y) is continu-
ous on R

n. By Theorem 4, the directional derivative of ϕ(y) at any point
y ∈R

n in any direction h∈R
n of norm 1 exists, and is given by

ϕ′(y;h)=〈f ′′(y)h,p(y)〉, (3.2)

where p(y) = arg maxx∈D〈f ′(y), x〉. Based on this formula, we show that
the partial derivatives of the function ϕ(y) at a point y exist and contin-
uous. In order to do that evaluate right-side and left-side partial deriva-
tives of the function with respect to ith components at the point y in the
following:

∂ϕ(y)

∂yi

∣∣∣
+

= lim
ε→+0

ϕ(y + εei)−ϕ(y)

ε
= ∂ϕ(y)

∂ei
= [f ′′(y)p(y)]i ,

i =1,2, . . . , n,

∂ϕ(y)

∂yi

∣∣∣
−

= lim
ε→+0

ϕ(y − εei)−ϕ(y)

−ε
=− ∂ϕ(y)

∂(−ei)
= [f ′′(y)p(y)]i ,

i =1,2, . . . , n.

Thus we conclude that right-side and left-side partial derivatives of the
function at the point y are equal. This shows that the partial derivatives
of the function exist and have the form:

∂ϕ(y)

∂yi

= [f ′′(y)p(y)]i , i =1,2, . . . , n.

Since p(y) is continuous then these partial derivatives are also continu-
ous functions. Hence, we conclude that the function ϕ(y) is differentiable
on R

n with the gradient ϕ′(y):

ϕ′(y)=f ′′(y)p(y). (3.3)

Taking into account (3.1)–(3.3), we have

π ′(y)=ϕ′(y)−φ′(y)=f ′′(y)p(y)−f ′′(y)y −f ′(y)

=f ′′(y)(p(y)−y)−f ′(y),

which completes the proof.

LEMMA 3. If there is a point y ∈ R
n such that π(y) > 0 and y ∈ Ef (z)(f )

for a feasible point z∈D, then

f (x(y))>f (z)

holds, where x(y)∈D satisfies 〈f ′(y), x(y)〉=maxx∈D〈f ′(y), x〉.
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Proof. By the definition of π(y), we have

π(y)=max
x∈D

〈f ′(y), x −y〉=〈f ′(y), x(y)−y〉.

Since f is strongly convex we have

f (u)−f (v) � 〈f ′(v), u−v〉

for all u, v ∈R
n [16]. Therefore, the assumption in the lemma implies that

f (x(y))−f (z)=f (x(y))−f (y) � 〈f ′(y), x(y)−y〉=π(y)>0. �

LEMMA 4. If θ(z)=π(y∗)=0 then f (z)=f (x(y∗)).

Proof. Since f is convex, we have f (u) − f (v) � 〈f ′(v), u − v〉 for all
u, v ∈R

n. Therefore, setting u=x(y∗) and v = z in the latter gives us

f (x(y∗))−f (z) = f (x(y∗))−f (y∗)
� 〈f ′(y∗), x(y∗)−y∗〉=π(y∗)=0.

Hence, f (x(y∗)) � f (z). On the other hand, by Theorem 2, the point z is
a global maximizer. Thus, f (x(y∗))=f (z). The proof is complete.

THEOREM 5. Let z ∈ D and y ∈ Ef (z)(f ). Assume that the vectors π ′(y)

and f ′(y) are linearly independent. Then there is a point ȳ ∈ Ef (z)(f ) in a
neighborhood of y such that π(ȳ)>π(y).

Proof. Let y ∈Ef (z)(f ) i.e. f (y)=f (z). Find a small variation δy which
satisfies π(y + δy)>π(y) and y + δy +o(‖δy‖)∈Ef (z)(f ). It is equivalent to
the following problem to find δy such that [6]:

δπ(δy)=〈π ′(y), δy〉>0, (3.4)

δf (δy)=〈f ′(y), δy〉=0. (3.5)

Since a set of δy satisfying condition (3.5) is a linear space, it is sufficient
to find δy with 〈π ′(y), δy〉 	=0. In fact, if 〈f ′(y), δy〉=0 and 〈π ′(y), δy〉=0,
then it follows that f ′(y) and π ′(y) are linear dependent which contradict
the assumption of the lemma. Consequently, systems (3.4) and (3.5) has a
nonzero solution δy. For all ρ ∈R+, the first-order Taylor series expansion
yields

f (y +ρδy)=f (y)+ρ〈f ′(y), δy〉+ρ2o(‖δy‖2).
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Assume that ‖δy‖ = 1 and ρ be a small parameter. Now we introduce a
small correction ỹ as follows:

‖ỹ‖=o(ρ2), (3.6)

f (y +ρδy + ỹ )−f (z)=0. (3.7)

Then according to ([6], pp. 399), we have

π(y +ρδy + ỹ )=π(y)+ρ〈π ′(y), δy〉+o(ρ2)

>π(y)+ρ〈π ′(y), δy〉. (3.8)

If we set ȳ = y + ρδy + ỹ, then we obtain π(ȳ) > π(y), ȳ ∈ Ef (z)(f ) which
proves the assertion.

LEMMA 5. Let the set D be strictly convex and z∈D. If z is a local max-
imizer of the problem (2.1) then

π ′(z)=−f ′(z).

Proof. First we show that π(z)=0. Since z is a local maximizer then

〈f ′(z), x − z〉 � 0

holds for all x ∈D. Consequently,

π(z)=max
x∈D

〈f ′(z), x − z〉=0.

According to Lemma 2, π ′(z) is computed as

π ′(z)=f ′(z)[x(z)− z]−f ′(z),

where

〈f ′(z), x(z)〉=max
x∈D

〈f ′(z), x〉.

Clearly, x(z)= z. Hence, we obtain π ′(z)=−f ′(z).

Finding a point y ∈Ef (z)(f ) is justified by the following statement.

LEMMA 6. Let f : Rn →R be a strongly convex and differentiable function
and z∈R

n. If a vector p ∈R
n satisfies 〈f ′(z),p〉<0 then there exists a pos-

itive number β >0 such that z+βp ∈Ef (z)(f ).
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Proof. Introduce the set at the point z∈R
n

L(z, f )={x ∈R
n|f (x) � f (z)},

which is compact due to strongly convexity of f [16]. Consequently, there
is a number M >0 for which ‖x‖ � M holds for all x ∈L(z, f ). Denote by
φ(α) the following function:

φ(α)=f (z+α)−f (z).

Obviously, φ: R+ →R is convex. Write down Taylor’s formula for the func-
tion f at z:

f (z+αp)−f (z)=α〈f ′(z),p〉+o(α‖p‖),

where o(α‖p‖)
α

→ 0 as α → 0. Since 〈f ′(z),p〉 < 0, there exists a sufficiently
small ε � 0 such that

f (z+αp)−f (z)<0, α ∈ (0, ε],

in particular, φ(ε)<0. Hence, we have

z+αp ∈L(z, f ) for all α(0, ε].

We can easily show that for a fixed number γ >ε the inequality

f (z+αp)−f (z) � 0 for all α ∈ [γ,+∞[

holds. Otherwise, we have

f (z+αp)−f (z)<0 for all α ∈ [γ,+∞[.

If we construct a sequence of {αk} in the following way:

α0 =γ, α1 =γ +1, . . . , αk =γ +k, k =0,1, . . .

then the sequence xk = z + αkp ∈ L(z, f ). Clearly, ‖xk‖ → ∞ as k → ∞,
which contradicts boundedness of L(z, f ). Thus

f (z+γp)−f (z) � 0.

If f (z+ γp)−f (z)= 0 then take β as β = γ . If f (z+ γp)−f (z)> 0, then
φ >0. Since φ is continuous, there exists a point β ∈ (ε, γ ) such that φ(β)=
0 or f (z+βp)=f (z) which implies z+βp ∈L(z, f ) proving the assertion.
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COROLLARY 1. If f (x) = 〈Cx,x〉 + 〈d, x〉 + q is a strongly convex qua-
dratic function then β can be easily found analytically as follows:

β =−〈2Cz+d,p〉
〈Cp,p〉 .

COROLLARY 2. When D is strictly convex then there exists a positive β

such that

z−βπ ′(z)∈Ef (z)(f ).

Lemmas 2–6 give us some heuristic approach to iterative solution of prob-
lem (2.1). In fact, we start with an arbitrary feasible point z0 ∈D and then
find a point y0 ∈R

n such that y0 ∈Ef (z)(f ) and π(y0)>0. The next approxi-
mation point will be z1 =x(y0). We will continue this iteration process until
we can not get π(yk)>0. Then the proposed algorithm based on the above
assertions is the following.

ALGORITHM 1.

Step 1. Let z0 ∈D and k :=0.

Step 2. Find a point xk as a solution of the problem

xk : 〈f ′(zk), x〉→max, x ∈D.

Step 3. Compute π(zk)

π(zk)=〈f ′(zk), xk − zk〉.

Step 4. If π(zk)>0 then zk+1 :=xk, k :=k +1 and go to Step 2.
Step 5. Find yk ∈Ef (zk)(f ) such that π(yk)>0, where

π(yk)=〈f ′(yk), x(yk)−yk〉.

Set zk+1 :=x(yk), k :=k +1 and go to Step 2.
Step 6. Otherwise, zk is a global solution to problem (2.1).

THEOREM 6. Let D be a polyhedral set. Assume that in Algorithm 1

π(zk)>0 for all k =0,1, . . .

Then the sequence {zk, k =0,1, . . . } generated by the algorithm converges to
a global solution of problem (2.1) in a finite number of steps.
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The proof is immediate from the optimality condition in Theorem 2,
Lemmas 2–6 and taking into account that the problem has a polyhedral
constraint set with a finite number of local maximizers.

4. Numerical Experiments

The proposed algorithm has been implemented in programming language
Borland C++ v.5.02 on personal computer with Pentium300 Mhz proces-
sor and 64 MB RAM. The results are given in Tables 1–4. The list of prob-
lems was as follows.

Table 1.

Problem Number of Number of Computation time Number of
variables constraints in (sec) improvements∗

1 2 2 0.0549 1
2 20 10 0.3846 2
3 20 10 1.3187 2
4 20 10 0.3297 3
5 20 10 1.2637 4
6 20 10 1.5934 5
7 5 6 0.0549 4
8 6 9 0.0549 2
9 60 90 6.59 6

10 200 300 235.49 15
11 2 5 0.0549 1

∗Number of improvements means the number of vertices found during the computation at which the
value of the function π is positive.

Table 2.

Problem Initial local Approximate global Actual global
maximum value maximum value maximum value

1 2 4 4
2 226.048 394.750795 394.7506
3 716.04773 749.776825 884.75058
4 5320.956055 8695.01193 8695.01193
5 682.58444 754.750335 754.75062
6 1557.40290 5082.15058 5082.199895
7 0 17 17
8 0.03567 0.07134 0.07134
9 2.8243E+11 5.64859E+11 5.64859E+11

10 7.0697E+44 1.41393E+45 1.41393E+45
11 1.8 3.25 3.4
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Table 3.

Problem The minimum value Improvement* (%) Total error**(%)

1 0 50 0
2 0 42.74 0
3 0 3.81 15.25
4 0 38.80 0
5 0 9.56 0
6 0 69.35 0
7 −101.9 14.30 0
8 0 50 0
9 0 50 0

10 0 50 0
11 0 42.65 4.41

(*,**) The improvement and total error in a percent has been computed using the following formula

Improvement= Mε −M0

M −m
∗100%,

Total error= M −Mε

M −m
∗100%,

where M denotes the actual global maximum value, Mε is an approximate global maximum value
obtained from the computation, M0 is the initial local maximum value from which the computation
starts and m denotes the unconstrained minimum value of the objective function.

Table 4.

Dimension The largest eigenvalue Time (sec)

3 6.371799 0.91
5 17.177 0.92

10 67.84318 0.96
20 270.49297 1.29
30 608.2483 1.30
40 1081.111 1.83
50 1689.076 2.72
60 2432.145 4.71
70 3310.318 6.94
80 4323.594 9.84
90 5471.873 12.65

100 6755.35 15.01

Problem 1.

max (x)=2x2
1 +4x2

2 −5x1x2

s.t. 0 � x1 � 1 (4.1)

0 � x2 � 1.
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Problems from 2 to 6 had the form [5]:

max f (x)= 1
2

20∑
i=1

λi(xi −αi)
2

s.t. Ax � b

x � 0

AT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 7 0 −5 1 1 0 2 −1 1
7 0 −5 1 1 0 2 −1 −1 1
0 −5 1 1 0 2 −1 −1 −9 1

−5 1 1 0 2 −1 −1 −9 3 1
1 1 0 2 −1 −1 −9 3 5 1
1 0 2 −1 −1 −9 3 5 0 1
0 2 −1 −1 −9 3 5 0 0 1
2 −1 −1 −9 3 5 0 0 1 1

−1 −1 −9 3 5 0 0 1 7 1
−1 −9 3 5 0 0 1 7 −7 1
−9 3 5 0 0 1 7 −7 −4 1
3 5 0 0 1 7 −7 −4 −6 1
5 0 0 1 7 −7 −4 −6 −3 1
0 0 1 7 −7 −4 −6 −3 7 1
0 1 7 −7 −4 −6 −3 7 0 1
1 7 −7 −4 −6 −3 7 0 −5 1
7 −7 −4 −6 −3 7 0 −5 1 1

−7 −4 −6 −3 7 0 −5 1 1 1
−4 −6 −3 7 0 −5 1 1 0 1
−6 −3 7 0 −5 1 1 0 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

b= (−5 2 −1 −3 5 4 −1 0 9 40 )T .

Problem 2.

max f (x)= 1
2

20∑
i=1

(xi −2)2

s.t. Ax � b (4.2)

x � 0.

Problem 3.

max f (x)= 1
2

20∑
i=1

(xi +5)2

s.t. Ax � b (4.3)

x � 0.
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Problem 4.

max f (x)= 1
2

20∑
i=1

20x2
i

s.t. Ax � b (4.4)

x � 0.

Problem 5.

max f (x)= 1
2

20∑
i=1

(xi −8)2

s.t. Ax � b (4.5)

x � 0.

Problem 6.

max f (x)= 1
2

20∑
i=1

i(xi −2)2

s.t. Ax � b (4.6)

x � 0.

In the above problem the algorithm has found a solution

x =
(

0 0 0 0.41269 0 0 0 0 0 0
0 0 1.50545 0 0 7.30558 0 12.7467 0 18.02915

)T

with the objective value 5082.199895 which improved a result in [5].

Problem 7.

max f (x)= 1
2xT Qx − cT x

s.t. 20x1 +12x2 +11x3 +7x4 +4x5 � 40 (4.7)

0 � x � 1,

where Q=100∗ I ; cT = (42,44,45,47,47,5) and I is a unit matrix.
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Problems 8–10 have been constructed using a technique proposed by
Calamai et al. [2]. We had constructed the problems of the following type:

max
n∑

j=1

3(j−L)
(
(xj −1)2 + (yj −1)2)

s.t. A1x +A2y � b

x � 0, y � 0,

where A1,A2 ∈ R
n×3n , x, y ∈ R

n and b ∈ R
3n and if denote by a1

ij and a2
ij

elements of A1 and A2 then they are defined as

a1
j (3j−2) =α, a2

j (3j−2) =β, b3j−2 =α +β +αβ,

a1
j (3j−1) =1, a2

j (3j−1) =−(β +1), b3j−1 =0,

a1
j (3j) =−(α +1), a2

j (3j) =1, b3j−1 =0

for j =1, . . . , n, where L is a positive integer parameter and α=√
3 ; β =2.

The objective function attains the global maximum value 4 · ∑n
j=1 3(j−L)

at x = (3, . . . ,3︸ ︷︷ ︸
n

,1, . . . ,1︸ ︷︷ ︸
n

)T . These problems have been tested for different

dimensions.

Problem 8. L=7, n=3.

Problem 9. L=7, n=60.

Problem 10. L=7, n=200.

Problem 11 ([8]).

max f (x)= (x1 −1.2)2 + (x2 −0.6)2

s.t. −2x1 +x2 � 1

x2 � 2

x1 +x2 � 4 (4.8)

x1 � 3

0.5x1 −x2 � 1

x1 � 0, x2 � 0

Also, the problem of finding the largest eigenvalue of a positive definite
symmetric matrix A was formulated as the following equivalent convex
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maximization problem ([13], Theorem 32.3, pp. 344):

f (x)=〈Ax,x〉→max, ‖x‖ � 1,

and then it has been numerically solved by the proposed algorithm. For
this problem, we have

f ′(x)=2Ax, f ′′(x)=2A,

and the problem

〈f ′(x), y〉→ max, ‖x‖ � 1

has the unique solution

x(y)= Ay

‖Ay‖ .

Consequently,

π(y)= max
‖x‖�1

〈2Ay,x −y〉
=2〈Ay,x(y)〉−2〈Ay,y〉
=2(‖Ay‖−〈Ay,y〉), (4.9)

π ′ =f ′′(y)[x(y)−y]−f ′(y)= 2A2y

‖Ay‖ −4Ay.

In Table 4, we found the largest eigenvalue of the matrix A for different
dimensions.

A=

⎛
⎜⎜⎝

n n−1 n−2 . . . 1
n−1 n n−1 . . . 2
. . . . . . . . . . . . . . .

1 2 3 . . . n

⎞
⎟⎟⎠ .

5. Conclusions

We have proposed a method for solving the convex maximization problem
based on the global optimality conditions by Strekalovsky. Under some
assumptions the proposed method had a convergence property. The com-
putational results are given. Also, the problem of finding the largest
eigenvalue of a matrix has been solved by the proposed algorithm.
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